
Conservative Z-Prepass for Frustum-Traced Irregular Z-Buffers
Yusuke Tokuyoshi

SQUARE ENIX CO., LTD.
tokuyosh@square-enix.com

Tomohiro Mizokuchi
SQUARE ENIX CO., LTD.

mizotomo@square-enix.com

(a) 1st visibility test (CSM) (b) 2nd visibility test (IZB) (c) Rendering result

279k triangles
screen resolution: 3840×2160

IZB resolution: 2048×2048
GPU: NVIDIA® GeForce® GTX 1070

279k triangles
screen resolution: 3840×2160

IZB resolution: 2048×2048
GPU: NVIDIA® GeForce® GTX 1070

Figure 1: Visibility mask buffer (a, b) and rendering result (c) using a two-pass visibility test for hard shadows. The visibility is
first roughly tested using a conservative shadow map (CSM) (a), and then an accurate visibility test using an IZB is performed
only for the remaining shading points (b). Using this pipeline, the shadow performance is improved from 8.52 ms to 3.59 ms.

ABSTRACT
This paper presents a pipeline to accelerate frustum-traced irregu-
lar z-buffers (IZBs). The IZB proposed by Wyman et al. is used to
render accurate hard shadows for real-time applications such as
video games, while it is expensive compared to shadow mapping.
To improve the performance of hard shadows, we use a two-pass
visibility test by integrating a conservative shadow map into the
pipeline of the IZB. This paper also presents a more precise im-
plementation of the conservative shadow map than the previous
implementation. In our experiments for 4K screen resolution, the
performance of the hard shadow computation is improved by more
than double on average using the two-pass visibility test, though
there is still room for optimization.

CCS CONCEPTS
• Computing methodologies→ Visibility;

KEYWORDS
hard shadows, irregular z-buffers, conservative shadow maps

ACM Reference Format:
Yusuke Tokuyoshi and Tomohiro Mizokuchi. 2018. Conservative Z-Prepass
for Frustum-Traced Irregular Z-Buffers. In Proceedings of SIGGRAPH ’18
Posters. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3230744.
3230755

1 INTRODUCTION
An accurate hard shadow algorithm using frustum-traced irregular
z-buffers (IZBs) [Wyman et al. 2016] is used for real-time applica-
tions such as video games [Story and Wyman 2016]. In this paper,
we present a pipeline to accelerate the IZB shadow algorithm. The

SIGGRAPH ’18 Posters, August 12-16, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
SIGGRAPH ’18 Posters, https://doi.org/10.1145/3230744.3230755.

IZB algorithm first constructs per-texel linked lists of shading points
in light space, and then the visibility is tested for each node (i.e.,
shading point) in those lists using frustum tracing. This algorithm
can be expensive when many shading points are projected into a
texel of the IZB and are occluded by multiple triangles in light space.
Therefore, we employ a two-pass visibility test using a conserva-
tive shadow map [Hertel et al. 2009] which stores a conservative
depth to detect fully shadowed shading points. The conservative
shadowmapwas developed to alleviate the cost of classic ray-traced
hard shadows, while this paper integrates it into the modern IZB
pipeline. In our pipeline, fully shadowed nodes are detected using
the conservative shadowmap before constructing the lists, and then
they are culled to reduce the cost of the IZB creation and frustum
tracing (Fig. 1). Since the efficiency depends on the precision and
computation cost of the conservative shadow map, this paper also
presents a more precise implementation of conservative shadow
mapping than the previous implementation. Using our method, we
are able to improve the performance of hard shadows especially
when shading points are occluded by multiple triangles.

2 CONSERVATIVE SHADOWMAPS
Our pipeline first renders a conservative shadow map (CSM) with
the same resolution as the IZB. Unlike general shadow maps, a
conservative depth is stored only into a texel fully covered by a
triangle to detect fully shadowed shading points. This conservative
depth must be more distant than the quadrilateral created by the
plane of the triangle and the texel (Fig. 2). By setting the slope
scaled depth bias by 1, the GPU rasterizer automatically outputs
this conservative depth for a distant light source. Whether the texel
is fully covered or not is tested in a pixel shader.

Fully Covered Texel. Hertel et al. [2009]’s implementation was
too conservative to detect fully covered texels, because they tested
whether the circumscribed circle of the texel is inside the triangle or
not in the image space. To improve the precision of this detection,
this paper uses barycentric coordinates at the four corners of the

https://doi.org/10.1145/3230744.3230755
https://doi.org/10.1145/3230744.3230755
https://doi.org/10.1145/3230744.3230755

SIGGRAPH ’18 Posters, August 12-16, 2018, Vancouver, BC, Canada Y. Tokuyoshi and T. Mizokuchi

Figure 2: Conservative shadow maps
store a depth more distant than the
blue quadrilateral created by the tri-
angle and texel. This depth gives the
fully shadowed volume (orange) in each
texel.

Program 1: Our pixel shader for CSMs (HLSL).
void main(float4 p : SV_Position, float2 c : BARYCENTRICS) {
float2 dx = ddx(c) ∗ 0.5;
float2 dy = ddy(c) ∗ 0.5;
float2 a = dx + dy;
float2 b = dx − dy;
if(c.x < max(abs(a.x), abs(b.x)) || c.y < max(abs(a.y), abs(b.y)) ||
1.0 − c.x − c.y < max(abs(a.x + a.y), abs(b.x + b.y))) {
discard;

}
}

Table 1: Rendering time of a CSM and culling rate.

262k triangle scene 12.8M triangle scene
time rate time rate

Hertel et al. [2009] 0.48 ms 55.5% 4.75 ms 35.8%
Ours 0.47 ms 56.0% 4.72 ms 37.4%

texel instead of the circumscribed circle. If these barycentric coor-
dinates are all positive, this texel is fully covered. For a distant light
source, this is simply implemented in a pixel shader as shown in
Program 1. This precise implementation has almost the same com-
putation cost as the previous implementation (Table 1). Although
our current implementation uses a geometry shader to generate
barycentrics, they can also be obtained using SV_Barycentricswhich
will be available in HLSL 6.1. Thus, our implementation can be fur-
ther accelerated in the future.

3 TWO-PASS VISIBILITY TEST
In our IZB creation pass, the visibility of each shading point is
roughly tested using the above conservative shadow map. If the
shading point is shadowed, the shadow is outputted into a visibility
mask buffer (Fig. 1a). Otherwise, the shading point is inserted into
the IZB as a new node of the list. Although our IZB creation pass has
an overhead for this visibility test and node culling, the computation
time of this pass is reduced in practice (Fig. 3) because our node
culling alleviates the cost of linked-list construction. After this
IZB creation pass, the frustum tracing pass rasterizes the scene
geometry in light space, and a pixel shader performs the accurate
visibility test for the list (Fig. 1b).

Triangle Fragment Culling. For the frustum tracing pass, triangle
fragments are culled using another depth buffer, similar to Wyman
et al. [2016]. This depth buffer is also created in the IZB creation
pass, by writing the depth at the farthest node into each texel. For
our pipeline, this depth buffer has depth values smaller than the
previous method because of node culling. Thus, fragments are also
further culled in the frustum tracing pass. Since the depth buffer is

(a) IZB w/o node culling

IZB Creation: 3.28 ms
Frustum Tracing: 9.12 ms
Total: 12.40 ms

(b) IZB with node culling

CSM Generation: 0.47 ms
IZB Creation: 1.07 ms
Frustum Tracing: 0.58 ms
Total: 2.12 ms 0

50

Figure 3: Visualizations of the length of the list in each IZB
texel and computation time for each pass. Our pipeline culls
fully shadowed candidate nodes for the list, and thus the per-
formance is improved.

written by the rasterizer, our IZB creation and depth buffer creation
are implemented in a single pass using a vertex shader by treating
each shading point as a point primitive.

4 RESULTS AND FUTUREWORK
In our experiments for 4K screen resolution on anNVIDIA® GeForce®
GTX 1070 GPU, our pipeline improves the computation time of
hard shadows as shown in Fig. 1. The additional experiments for
more complex scenes are shown in the supplementary material. The
two-pass visibility test is especially effective when many shading
points are occluded by multiple triangles (Fig. 3). On the other hand,
there is still room for further improvement in performance.

Light-Space Partitioning. In our experiment, light-space parti-
tioning [Story and Wyman 2016] (which performs load balancing
for IZBs) is not used. Since partitions are determined based on the
distribution of nodes, the efficiency can be further improved by
combining the proposed node culling with partitioning.

Small Triangles. The conservative shadow map is not efficient
for triangles smaller than the texel. However, it is not necessary
to rasterize all the triangles in the scene to generate conservative
shadow maps. Therefore, only objects containing large triangles
should be drawn to reduce the overhead.

SV_Barycentrics vs. SV_InnerCoverage. A fully covered texel can
also be detected using an HLSL system value SV_InnerCoverage
for conservative rasterization tier 3 capable GPUs1. Although this
approach is simple, it has to use expensive conservative rasteri-
zation unlike our implementation. We would like to compare the
performance between our implementation using SV_Barycentrics
and this conservative rasterization-based approach in the future.

REFERENCES
S. Hertel, K. Hormann, and R. Westermann. 2009. A Hybrid GPU Rendering Pipeline

for Alias-Free Hard Shadows. In EG ’09 Areas Papers.
J. Story and C. Wyman. 2016. HFTS: Hybrid Frustum-traced Shadows in "the Division".

In SIGGRAPH ’16 Talks. Article 13, 2 pages.
C. Wyman, R. Hoetzlein, and A. Lefohn. 2016. Frustum-Traced Irregular Z-Buffers:

Fast, Sub-Pixel Accurate Hard Shadows. IEEE Trans. Vis. Comput. Graph. 22, 10
(2016), 2249–2261.

1NVIDIA® GeForce® GTX 10 series are tier 2 capable.

	Abstract
	1 Introduction
	2 Conservative Shadow Maps
	3 Two-Pass Visibility Test
	4 Results and Future Work
	References

